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The evaluation of the strength distribution of 
silicon carbide and alumina fibres by a 
multi-modal Weibull distribution 
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The strengh distributions of silicon carbide and alumina fibres have been evaluated by a multi- 
modal Weibull distribution function. This treatment is based on the concept that the fracture 
of the fibre is determined by competition among the strength distributions of several kinds of 
the defect sub-population. Since those fibres were observed to have two types of fracture 
mode, the evaluation of a bi-modal Weibull distribution was performed in comparison with the 
single Weibull distribution usually employed. The accuracy of the fit for these two distributions 
was judged from maximum logarithm likelihoods and cumulative distribution curves. The result 
showed that the logarithm likelihood calculated using the bi-modal Weibull distribution 
function gave a larger value, as compared with those using the single Weibull distribution 
function. The curve predicted from the former function was also in good agreement with the 
data points. In addition, the strength distribution and the average value at a different gauge 
length were extrapolated from the Weibull parameters estimated at the original gauge length. 
In this case, also, the bi-modal Weibull distribution gave a more accurate prediction of the 
data points. 

1. I n t r o d u c t i o n  
Most statistical strength analysis of advanced ceramic 
fibres, such as boron (e.g. [1, 2]), carbon (e.g. [3-5]), 
coreless silicon carbide [6], alumina [7], carbon-core 
silicon carbide [8] fibres, etc., has been discussed using 
a single Weibull distribution function. This distribution 
is based on the theory in which the fracture is controlled 
by the weakest defect of all the defects in a fibre, the 
so-called "weakest link theory", It has also been 
reported, on the other hand, that those fibres had 
several kinds of fracture modes [1 9] and each of the 
strengths was completely changed depending on the 
kind of defect causing the failure. We consider, in this 
case, it is too rough to approximate the strength distri- 
bution as a straight line on a Weibull probability 
graph without taking the kind of the defect into 
account. In fact it is also reported that a cumulative 
distribution curve predicted from the single Weibull 
distribution is inconsistent with experimental data 
[10]. In recent years, therefore, other methods, e.g. a 
method using a mixed Weibull distribution function 
[11] and a multi-stage tension testing procedure based 
on Poisson's model [12] etc., have been proposed for 
evaluating the strength distribution of ceramic fibres. 
ceramic fibres. 

In this paper we try to apply a multi-modal Weibull 
distribution function [13] to the strength distribution 
of ceramic fibres, from a viewpoint that the distribution 
is determined by competition among the strength distri- 
butions of several kinds of the defect sub-population 
existing in a fibre. Two types of advanced metal- 
reinforcing fibres, i.e. silicon carbide and alumina 

fibres, were employed in the analysis of the present 
work. It is known that these two types of fibres have 
two kinds of fracture mode [6, 7, 9]. The Weibull 
parameters of single and bi-modal Weibull distri- 
butions were estimated from the results of Nunes [7] 
and the present experiment, based on a maximum 
likelihood estimation method [13, 14]. The accuracy of 
these two distribution functions was evaluated by the 
maximum logarithms of likelihoods and the cumulative 
distribution curves. The result showed that the likeli- 
hood calculated from the bi-modal Weibull distri- 
bution gave a larger value than that using the single 
Weibull distribution. The distribution curve predicted 
from the bi-modal Weibull distribution was also in 
better agreement with the experimental data. The 
extrapolative ability of the distribution curve and the 
average strength was additionally investigated. It was 
also proved that these values estimated from the bi- 
modal Weibull distribution corresponded more closely 
with the experimental data than that from the single 
Weibull distribution. 

2. Analytical procedure 
2.1. Description of distribution function 
For discussion of the strength distribution of brittle 
materials, such as ceramics, the following two terms 
are generally assumed (e.g. [11, 13]): 

1. The material contains inherently many strength- 
limiting defects, and its strength depends on the 
weakest defect of all of them. 

2. There are not interactions among the defects. 
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The present analysis is also carried out on these 
assumptions. The cumulative distribution function 
F(o.) of strength a for simple tension, as shown in 
many reports [6-8, 15], is expressed by the following 
single Weibull distribution function on the basis of the 
single-risk model (referred as the case of two- 
parameter), whether the kind of strength-limiting defect 
exists a tot in a fibre or not: 

[ ( 0il F(o-) = 1 - exp - (1) 

where m is the shape parameter and o.0 is the scale 
parameter. In recent years, however, it was proposed [9] 
that the distribution should be given by  the multi- 
modal Weibull distribution function based on the 
multi-risk model [14], if two or more kinds of strength- 
limiting defect sub-population existed together in 
a brittle material. Here for simplicity a bi-modal 
Weibull distribution function is described as follows 
[13, 15-17]: 

= 1 -- [1 -- Fl(o.)][1 -- F2(o.)] 

= 1 -  exp [ - - ( ~  m ' -  ( o . i  '2] (2) 
~,xo.01// k O .02 / /  J 

F~ (o.) and F2(o.) mean the strength distribution func- 
tions of the defect sub-population Nos. 1 and 2, 
respectively. Each of them is described as the single 
Weibull distribution. 

For estimating Weibull parameters, a maximum- 
likelihood estimation method [13] is applied in the 
present work. The likelihood function of the single 
Weibull distribution is generally given as 

L = I ] f ( t r~)  (3) 
i = 1  

where f(o.) means a probability density function and 
n is the total number of samples. The parameters 
maximizing L are equivalent to maximum likelihood 
estimators. On the other hand, the multi-modal Weibull 
distribution is based on a multi-risk model, so the 
likelihood function is given by the following equation 
(referred to as the bi-modal distribution) [13, 14]: 

"*/1 n2 

L = C H f l ( o . } l ) ) [ 1  - F2(o.}l))] 1-[A(o.}2>)[1 - F~(o.}2>)l 
i = 1  j = l  

= C f,(o.l '>) 1-[ [1 -- F,(aJ2))] 
L i= l  j = l  

• 2)) [1 - -  F 2 ( o . l  l) 
�9 = . =  

= CLI L2 (4) 

where C is a constant (=  n!/(n~ !n2!)), nl is the number 
of samples fractured by the cause of Defect 1 at stress 
o.]l),.., o.~1) and n 2 is the number of samples fractured 
by the cause of Defect 2 at stress o.~2), r/2) Since L1 . . , - - n  2 �9 

and L2 contain only Weibull parameters of the distri- 
bution described as Defects 1 and 2, respectively, the 
method of finding the maximum likelihood estimates 
for each likelihood, L1 and L2, may be applied (herein- 
after referred to as the "two-step maximum likelihood 
estimation method" [13]). It is also reported that such 

a method gives more reasonable parameters than the 
methods of hazard plotting estimation and mean order 
ranking estimation [17]. Then, the likelihood equations 
used are as follows, e.g. in the case of L~ 

n 

Z o.ml In o.i 

- - + - - ~  lno . i  J=~ - 0 
m, n, ,=, o.?i  

(5) 
i = 1  

TM 

o.0, = 7 i  o.7  

As to these equations, the first equation is solved by an 
iterative technique (the Newton-Raphson method) and 
if ml is found, o.0~ is easily calculated from the second 
equation. The values of likelihood are obtained by a 
substitution of these Weibull estimators for Equations 
3 and 4, respectively. It may be evaluated that a distri- 
bution function having a larger value of the likelihood 
gives a more realizable distribution. 

2.2. Prediction of strength distr ibut ion and 
the mean value at dif ferent gauge 
lengths 

In the case of our predicting a strength distribution at 
a different gauge length, Equations 1 and 2 are extended 
as follows: 

F(o.) = 1 - exp - L0 (6) 

F(o.) = 1 - e x p { - L 0 [ _ \ % 1 /  + ( ~ 0 2 ) 1 }  (7) 

where L is the length of a specimen and L 0 is the 
standard length of the specimen at which Weibull 
parameters have been estimated. In this paper, we deal 
only with the case of simple tension, so a hazard func- 
tion (tr/tro) m is simply proportional to a relative length 
L / L 0 .  

An average strength 5 can be calulated using 
Equations 6 and 7. The average value of Equation 6 is 
generally given as 

= o.0\T00j r 1 +  (8) 

where F means the gamma function. On the other 
hand, the average value of Equation 7 has been given 
by integrating numerically the following equation, 
since it cannot be expressed as an analytical one: 

= f? o.f(o.) do- = ( f  [1 - F(o.)] do. (9) 
d u  d o  

3. Experimental procedure and results 
3.1. Test materials and method of tensile test 
The following two types of advanced metal-reinforcing 
ceramic fibres were used as the test materials: coreless 
silicon carbide fibres (Nicalon, produced by Nippon 
Carbon Co. Ltd hereinafter referred to as "SIC fibres") 
and alumina fibres (Fiber FP, produced by Du Pont, 
hereinafter referred to as "A1203 fibres"). 

The specimens of the SiC and A1203 fibres were 
prepared with a 10 mm gauge length on the basis of 
Japan Industry of Standards R 7601 (Testing Methods 
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Figure 1 Fractographs of SiC fibres by SEM: (a) fractograph due to a surface defect, (b) fractograph due to an inner defect. 

for Carbon Fibres). The fibre diameter was measured 
using an optical microscope with the micrometer 
eyepiece. The tensile test was carried out using an 
Instron-type testing machine (Tensilon, STM-50BP, 
Toyo Baldwin Co. Ltd) at a strain rate of 0.02 min-1. 
The number of samples varied from 30 to 45 for each 
type of fibre. 

In general, primary fracture surfaces of brittle fibres 
are often lost because of the fragmentation occurring 
at the failure, so a test fibre was coated with a jellied 
dressing pack in order to prevent the primary fracture 
tips flying away [18]. The pack was so soft that the 
increment of force caused by its viscosity could be 
neglected compared with the load necessary to break 
the fibre itself. After the test, the pack around the tips 
was removed in water (at about 70 ~ C), and the primary 
fracture surfaces were observed by a scanning electron 
microscope (SEM). As for the A1203 fibres, we restric- 
ted our experiment to counting only the kind of the 
fracture mode in order to apply the results obtained by 
Nunes [7] to the present analysis. 

3.2. Fractographs and Weibull plots 
Figs 1 and 2 show typical fractographs of SiC and 
AI203 fibres, respectively. It is seen from the figures 
that SiC fibres are broken in a brittle manner by two 
kinds of defects, surface and inner defects, as shown 
by the white arrows of Figs l a and b. The former 
defect may be a "flaw" type, but the fibres broken by 
a "pit" type of defect and undetectable defects on the 
surfaces were sometimes observed. The later defect is 
observed to be a "void" type. The fracture surface of 

A1203 fibres appears to be granular and it is difficult to 
detect the initiation point of the failure, as shown in 
Fig. 2a. Several specimens had a "crooked" section 
[7], and failed at one of the bent sections as shown 
macroscopically in Fig. 2b. But the specimens were 
not always broken at the "crooked" section, some 
specimens being broken in an uncrooked section as 
shown in Fig. 2c. The result means that A1203 fibres 
have two kinds of fracture mode. Thus, A12 03 fibres 
show a tendency similar to the result of Nunes [7], so 
hereafter, his data are applied to the present analysis. 

Fig. 3 shows Weibull plots for the tensile strength of 
SiC fibres. Here the cumulative failure probability is 
given by a mean rank method [19]. In the figure the 
fracture surfaces corresponding to all of the plotted 
points have been observed by SEM at the initiation 
point of the fracture. The plotted points for fibres 
which were broken by the inner defect concentrate 
into the region of high strength, but the points for 
fibres which were broken by surface defects are scat- 
tered to the low-strength side. Here we deal with the 
"pit" type, "flaw" type and undetected defects as a 
similar type of a surface defect, because it is difficult to 
distinguish which type of defect has caused the failure. 

Such a characteristics is also exhibited onthe plotted 
points ofAlzO 3 fibres as shown in Fig. 4, on which the 
Nunes's data for a gauge length of 10in. (25mm) 
(FP-10) have been employed. The points are com- 
posed of two groups depending on the kind of the 
fracture mode, i.e. a group of the points having high 
strength and a group of the points having low strength 
labelled C, which means a fibre fractured at a 

Figure 2 Fractographs of A1203 fibres: (a) microscopic fractograph, (b) macroscopic fractograph at a crooked section, (c) macroscopic 
fractograph at an uncrooked section. 
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Figure 3 Weibull plots for SiC fibres and the cumulative distribution 
curves estimated from Equations 1 and 2. (o)  Surface defect, (e)  
inner defect. 

"crooked" section. The point positions in the low- 
strength group are characterized by having more 
extensive scattering than those in the other groups as 
shown in both figures. 

4.  A n a l y t i c a l  r e s u l t s  a n d  d i s c u s s i o n  
4.1. Comparison of single and bi-modal 

Weibull distribution functions 
Both SiC and A1203 fibres have two kinds of fracture 
mode and the strength distributions are completely 
changed depending on the fracture mdoe, as mentioned 
above. For such a distribution, it is doubtful to get a 
straight line expressed by Equation 1 to fit on to a 
Weibull probability graph. So, we try to compare the 
values analysed by Equations 1 and 2, which is our 
essential purpose. Estimates of the Weibull par- 
ameters have been calculated from the data points in 
Figs 3 and 4. The results are shown in Tables ! and II. 
Maximum logarithm likelihood values obtained from 
Equation 2 are larger than those from Equation 1 in 
both cases. Namely, it is proved that the bi-modal 
Weibull distribution function is a function more closely 
representing the true distributions. 

The cumulative distribution curves calculated from 
the Weibull estimators in Table I and II have been 
drawn on to Figs 3 and 4. In Fig. 3, the curve estimated 
from Equation 2 is in an accurate association with the 
plotted points. The group of plotted points for each 
fracture mode appears to be located by competition 
between two lines, Fl(a) and F2(~), which mean the 
strength distributions of the surface and inner defects 
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Figure 4 Weibull plots for A1203 fibre and the cumulative distribution 
curves estimated from Equations 1 and 2. C = "crooked" fibre. 

T A B L E  I Weibull parameters from Equation 1 and the 
maximum logarithm likelihood 

Fibres m % lnL 

SiC 4.70 4.24 - 6l .75 
A1203 2.95 1.14 - 2 1 . 9 7  

sub-populations, respectively. On the other hand, the 
line obtained from Equation 1 does not agree precisely 
with the points in the region of low strength. The same 
result has been obtained in Fig. 4. The curve of 
Equation 2 looks to have been drawn from the results 
of the competition between Fl(a) and F2(o-), which 
denote the strength distributions of crooked and 
uncrooked defect sub-populations, respectively, in 
A1203 fibres. The curve also fits more closely to the 
plotted points than the line of Equation 1. The results 
show that the bi-modal Weibull distribution is suf- 
ficiently applicable to the strength distribution of 
ceramic fibres, and this may be understood from the 
concept that a shape parameter is not a constant 
inherent in a material, but a constant inherent in a 
defect population. 

Beetz [11] has previously proposed a strength dis- 
tribution for a carbon fibre having two kinds of defect. 
In his paper, a mixed Weibull distribution function is 
applied. We consider, however, that this function may 
be applied to a population composed of two types 
of fibre. Because it is given from the standpoint of 
reliability [20], such a case deals with a lifetime dis- 
tribution of a certain member or device. If the mixed 
Weibull distribution function is applied to the above 
situation, the mixed parameters [21] can be easily and 
conclusively found. It has already been available for the 
strength analysis of a bundle composed of two types 
of fibres [22]. On the other hand, the multi-stage 
procedure method proposed by Pheonix [12] gives an 
accurate strength distribution curve for the tensile test 
data of boron fibres. But this method requires much 
labour for the procedure of preparing the specimens, so 
in the present paper the analysis by this method has 
been omitted, and only the results of the constant gauge 
length tension test have been considered. 

4.2. Prediction of strength distribution and 
the average strength at a different gauge 
length 

Strength distributions should be theoretically predicted 
at every gauge length. So, the tensile-test of SiC fibres 
has been additionally carried out at the gauge lengths 
of 5 and 50mm without observing by SEM. The 
cumulative distribution curves of these gauge lengths 
have been predicted from Equations 6 and 7 on the 
basis of Weibull parameters estimated at 10 mm gauge 
length. The results are shown in Fig. 5. It is seen that 
the curves of Equations 6 and 7 extrapolate to nearly 

T A B L E  II  Weibull parameters from Equation 2 and the 
max imum logarithm likelihood 

Fibres m I m2 a01 (F02 lnL 

SiC 3.64 9.41 4.64 5.08 - 57.16 
A1203 0.51 6.52 57.59 1.24 5.25 
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Figure 5 Weibull plots for SiC fibres at gauge lengths of (rn) 5 mm 
and (zx) 50 ram, and cumulative distribution curves predicted from 
Weibull estimates for the gauge length of 10mm. 

the same position for the experimental data for the 
gauge length of 5 mm. The reason for this may be that 
the length 5 mm is only one-half of  the gauge length 
used in an estimation of  Weibull parameters. For  
the data of gauge length 50 mm, however, the curve 
of Equation 7 is fitted more closely than that of 
Equation 6. Such a tendency is also seen in A1203 
fibres. Fig. 6 shows Weibull plots of data from Nunes 
[7] at the gauge lengths of 0.5in. (12.7mm) (FP-7) 
and 5 in. (127 mm) (FP-9). The distribution curves are 
drawn on the figures using Weibull parameters esti- 
mated at the gauge length of  10in. (254mm). In this 
case, also, the curves of Equation 7 predict more 
closely the plots for the gauge length of  0.5 in. and 5 in. 
than those of Equation 6. Thus, it is proved that the 
strength distribution for a different gauge length is 
more accurately predicted from the multi-modal 
Weibull distribution. 

The logarithms of the average strength of SiC and 
A1203 fibres are shown by open circles in Figs 7 
and 8, plotted against logarithms of the gauge length. 
The average strength curves of SiC and AI203 fibres 
have been calculated from Equations 8 and 9 on 
the basis of  Weibull parameters estimated at gauge 
lengths of 10 mm and 10 in., respectively. The curves of 
Equation 9 appear to fit more precisely for each open 
circle than those of Equation 8. It is proved that the 
multi-modal Weibull distribution is a more effective 
distribution to predict the average strength of a dif- 
ferent gauge length. Here it is noted that each circle at 
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Figure 6 Weibull plots for A12 03 fibres at gauge lengths of (m) 0.5 in. 
(12.7 ram) and (zx) 5 in. (127 mm), and cumulative distribution curves 
predicted from Weibull estimates for the gauge length of 10in. 
(254mm) (FP-10) [7]. 
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Figure 7 Average strength plots of SiC fibres, and the curves 
extrapolated from Weibull estimates for the gauge length of 10 mm. 

the gauge lengths of  5 mm and 0.5 in. is located at a 
slightly lower position than the curve of  Equation 9. 
The reason may be that the fractured positions of SiC 
fibres tested at 5 mm gauge length have sometimes 
existed in the regions of the fibre clamps, and therefore 
the average strengths have been underestimated by the 
clamp effect which has been already pointed out by 
Pheonix and Sexsmith [23]. This problem can be also 
solved easily from the concept of the multi-risk model 
in which the fracture is determined by competition 
among strength distributions of two clamp regions 
and a tested region, but in this paper we omit this 
analysis. 

We now resume the discussion concerning a vari- 
ation of the strength distribution depending on the 
gauge length, on the basis of a bi-modal Weibull 
distribution. The strength of reinforcing ceramic fibres 
is often predicted in the range of aspect ratio from 
approximately 10 to 100, because in composites a fibre 
embedded in a matrix exhibits a strength equivalent to 
an ineffective length (e.g. [24-26]). So, cumulative 
distribution curves of SiC fibres have been extrapolated 
from Equation 7 for the gauge lengths of aspect ratio 10 
and 100 using WeibuU parameters in Table II, as shown 
in Fig. 9. It is seen that the shorter the gauge length 
becomes, the larger the curve slopes according to the 
distribution function F2. This means a decrease in the 
scatter of the fibre strength. The reason is that the shape 
parameter ml is smaller than m2, therefore the distri- 
bution line of F, moves more to the high-strength 
side than that of F2 on a Weibull probability graph. 
Consequently, the cumulative distribution curve of 
Equation 7 is progressively governed by F2. In other 
words, as the gauge length decreases, one kind of defect 
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Figure 8 Average strength plots of AI203 fibres, and the curves 
extrapolated from Weibull estimates for the gauge length of 10in. 
(254mm) (FP-10) [7]. 
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Figure 9 Cumulative distribution curves for SiC fibres predicted 
from Equation 7 at the aspect ratios of  10 and 100. ( ) F 1 , ( - - - )  
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controlling the strength of the fibre translates to the 
other kind of defect which has a stable strength com- 
pared with the former. Because of such a mutual 
relation between F1 and F2, it is assumed that the 
average strength curve extrapolated from the bi-modal 
Weibull distribution locates lower in the region of short 
gauge length than that from the single Weibull distri- 
bution. As shown in many reports [7, 10, 27-29], the 
scatter of the strength of ceramic fibres (for example, as 
expressed by a coefficient of variation or a shape 
parameter) has a tendency to decrease with a decrease 
of gauge length. We consider this is based on the con- 
cept mentioned above. 

5 .  C o n c l u s i o n  
For the purpose of evaluating exactly a strength dis- 
tribution of ceramic fibres, a multi-modal Weibull 
distribution was applied to the tensile test data of 
coreless silicon carbide and alumina fibres. This treat- 
ment was based on the concept that a fibre fracture 
was determined by a competition among the strength 
distributions of defect sub-populations. Since two 
kinds of  fracture mode were observed in both types of 
fibre by SEM, a bi-modal Weibull distribution was 
employed in the analysis and compared with the single 
Weibull distribution usually applied. The results 
obtained are as follows: 

1. The bi-modal Weibull distribution gave a larger 
value of maximum logarithm likelihood in both types 
of  fibres, and its cumulative distribution curve was in 
good agreement with the data points, as compared with 
the curve estimated from a single Weibull distribution. 

2. The strength distribution and the average value 
of  a different gauge length were investigated. In this 
case also it was proved that the values predicted from 
a bi-modal Weibull distribution corresponded more 
closely to the data points than those from a single 
Weibull distribution. 

It is finally concluded that the multi-modal Weibull 
distribution is applicable to the strength distribution 
of  ceramic fibres. 

R e f e r e n c e s  
t. G. K. LAYDEN,  J. Mater. ScL 8 (1973) 1581. 
2. J. V. BOGGIO and O. VINGSBO, ibid. 11 (1976) 273. 
3. J. W. JOHNSON and D. J. THORNE,  Carbon 7 (1969) 

659. 
4. B. F. JONES and B. J. S. WILKINS,  Fib. Sci. Tech. 5 

(1972) 315. 
5. Z. CHI,  T. W. CHOU and G. SHEN, J. Mater. Sei. 19 

(1984) 3319. 
6. G. SIMON and A. R. BUNSELL,  ibid. 19 (1984) 3649. 
7. J. NUNES,  A M M R C  T R  82-61 (Army Materials and 

Mechanics Research Center, Watertown, Massachusetts ,  
1982) p. 1. 

8. P. M A R T I N E A U ,  M. LAHAYE,  R. PAILLER,  R. 
NASLAIN,  M. COUZI  and F. CREUGE,  J. Mater. Sei. 
19 (1984) 2731. 

9. H. F U K U N A G A  and K. GODA, in Proceedings of  6th 
International European Chapter  Conference of  SAMPE, 
Scheveningen, May 1985, edited by G. Bartelds and 
R. J. Schliekelmann (Elsevier, Amsterdam,  1985) p. 125. 

I0. D. M. COTCHICK,  R. C. HINK and R. E. TRESS- 
LER, J. Compos. Mater. 9 (1975) 327. 

11. C. P. BEETZ Jr, Fib. Sci. Teeh. 16 (1982) 45. 
12. S. L. PHEONIX,  ASTM STP 580 (American Society for 

Testing and Materials, Philadelphia, 1975) p. 77. 
13. Y. MATSUO and H. M U R A T A ,  J. Soc. Mater. Sei. (in 

Japanese) 34 (1984) 1545. 
14. R. J. H E R M A N  and R. K. N. PATELL,  Technometries 

13 (1971) 385. 
15. T. E. EASLER,  R. C. BRADT and R. E. TRESSLER,  

J. Amer. Ceram. Soc. 64 (1981) C-53. 
16. K. JAKUS,  J. E. RITTER Jr, T. SERVICE and D. 

S O N D E R M A N ,  ibid. 64 (1981) C-174. 
17. D. SONDERMAN,  K. JAKUS,  J. E. RITTER Jr, S. 

YUHASKI  Jr and T. H. SERVICE, J. Mater. Sei. 20 

(1985) 207. 
18. J. B. JONES, J. B. BARR and R. SMITH, ibid. 15 

(1980) 2455. 
19. E. J. GUMBEL,  "Statics of  Extremes" (Japanese trans- 

lation by T. Kawata,  S. lwai and S. Kase) (Seisan Gijutsu 
Center Shinsha, Tokyo,  1978) p. 50. 

20. N. R. MANN,  R. E. SCHAFER and N. D. S INGPUR-  
WALLA,  "Methods  for Statistical Analysis and Life Da ta"  
(Wiley, New York, 1974) p. 137. 

21. J. H. K. KAO, Teehnometrics 1 (1959) 389. 
22. S. L. PHEONIX,  Fib. Sci. Teeh. 7 (1974) 15. 
23. S. L. PHEONIX and R. G. SEXSMITH,  J. Compos. 

Mater. 6 (1972) 322. 
24. B. W. ROSEN, AIAA Journal 2 (1964) 1985. 
25. C. ZWEBEN, ibid. 4 (1968) 2325. 
26. K. P. OH, J. Compos. Mater. 13 (1979) 311. 
27. M. MORITA,  H. T A K E D A  and I. ARIMA,  J. Jpn. Inst. 

Met. (in Japanese) 36 (1972) 1213. 
28. P. W. BARRY, Fib. Sei. Teeh. I1 (1978) 245. 
29. S. C H W A S T I A K ,  J. B. BARR and R. D I D C H E N K O ,  

Carbon 17 (1979) 49. 

Received 21 February 
and accepted 28 April 1986 

4 4 8 0  


